# Syllabus for GATE Instrumentation Engineering 2019 [Official] | GATE IN Syllabus

Instrumentation Engineering is one out of 23 papers in GATE exam 2019 syllabus. GATE aspirants with Instrumentation Engineering background can opt for this paper during Gate exam application procedure. Before preparing for GATE Instrumentation Engineering exam, aspirants should be aware of Eligibility criteria for GATE Exam. In this article, we are providing the syllabus for GATE Instrumentation Engineering to help you prepare your study & revision plan well.

GATE Instrumentation Engineering 2019 Exam is a gateway for qualifying candidates to secure admission to various PG programs in IITs, NITs, and other centrally funded institutions. GATE score can also be used pursue your career in various PSU’s.

The first step towards it is the knowledge of entire syllabus. Go through the entire syllabus and make your study plan accordingly.

### GATE Instrumentation Engineering Section 1: Engineering Mathematics

Linear Algebra: Matrix algebra, systems of linear equations, Eigenvalues and Eigenvectors.

Calculus: Mean value theorems, theorems of integral calculus, partial derivatives, maxima and minima, multiple integrals, Fourier series, vector identities, line, surface and volume integrals, Stokes, Gauss and Green’s theorems.

Differential equations: First order equation (linear and nonlinear), higher order linear differential equations with constant coefficients, the method of variation of parameters, Cauchy’s and Euler’s equations, initial and boundary value problems, and solution of partial differential equations: variable separable method.

Analysis of complex variables: Analytic functions, Cauchy’s integral theorem, and integral formula, Taylor’s and Laurent’s series, residue theorem, the solution of integrals. Probability and Statistics: Sampling theorems, conditional probability, mean, median, mode and standard deviation, random variables, discrete and continuous distributions: normal, Poisson and binomial distributions.

Numerical Methods: Matrix inversion, solutions of non-linear algebraic equations, iterative methods for solving differential equations, numerical integration, regression and correlation analysis.

### GATE Instrumentation Engineering Section 2: Electrical Circuits:

Voltage and current sources: independent, dependent, ideal and practical; v-I relationships of resistor, inductor, mutual inductor, and the capacitor; transient analysis of RLC circuits with dc excitation.

Kirchoff’s laws, mesh and nodal analysis, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems.

Peak-, average- and RMS values of ac quantities; apparent-, active- and reactive powers; phasor analysis, impedance, and admittance; series and parallel resonance, locus diagrams, the realization of basic filters with R, L and C elements.

One-port and two-port networks, driving point impedance and admittance, open-, and short circuit parameters.

### GATE Instrumentation Engineering Section 3: Signals and Systems

Periodic, aperiodic and impulse signals; Laplace, Fourier, and z-transforms; transfer function, the frequency response of first and second order linear time-invariant systems, an impulse response of systems; convolution, correlation. Discrete time system: impulse response, frequency response, pulse transfer function; DFT and FFT; basics of IIR and FIR filters.

### GATE Instrumentation Engineering Section 4: Control Systems

Feedback principles, signal flow graphs, transient response, steady-state-errors, Bode plot, phase and gain margins, Routh and Nyquist criteria, root loci, design of lead, lag and lead-lag compensators, state-space representation of systems; time-delay systems; mechanical, hydraulic and pneumatic system components, synchro pair, servo and stepper motors, servo valves; on-off, P, P-I, P-I-D, cascade, feedforward, and ratio controllers.

### GATE Instrumentation Engineering Section 5: Analog Electronics

Characteristics and applications of a diode, Zener diode, BJT, and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of operational amplifiers; applications of opamps: difference amplifier, adder, subtractor, integrator, differentiator, instrumentation amplifier, precision rectifier, active filters and other circuits. Oscillators, signal generators, voltage controlled oscillators and phase locked loop.

### GATE Instrumentation Engineering Section 6: Digital Electronics

Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS.

Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flip-flops, shift registers, timers, and counters; sample-and-hold circuit, multiplexer, analog-to-digital (successive approximation, integrating, flash and sigma-delta) and digital-to-analog converters (weighted R, R-2R ladder, and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, 8-bit microprocessor, and microcontroller: applications, memory, and input-output interfacing; basics of data acquisition systems.

### GATE Instrumentation Engineering Section 7: Measurements

SI units, systematic and random errors in measurement, expression of uncertainty – accuracy and precision index, propagation of errors. PMMC, MI and dynamometer type instruments; dc potentiometer; bridges for measurement of R, L, and C, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true RMS meters, voltage, and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding, and grounding.

### GATE Instrumentation Engineering Section 8: Sensors and Industrial Instrumentation

Resistive-, capacitive-, inductive-, piezoelectric-, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (differential pressure, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire),thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement.

### GATE Instrumentation Engineering Section 9: Communication and Optical Instrumentation

Amplitude- and frequency modulation and demodulation; Shannon’s sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude-, phase-, frequency-, pulse shift keying for digital modulation; optical sources and detectors: LED, laser, photo-diode, light dependent resistor and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing.

GATE (GRADUATE APTITUDE TEST IN ENGINEERING) 2018 Exam is an online examination conducted to test the understanding of candidate in undergraduate subjects of Engineering, Technology, Architecture and in postgraduate subjects of science. Download Application Form from GATE Official Website information is provided here.
GATE 2018 Exam Score can be used for admissions in various Postgraduate programs in various IIT’s, nits and other centrally funded institutions. Nowadays various PSU’s are also hiring with the GATE Score.
This exam is jointly coordinated by the seven IIT’s and IISC in a rotation, with IIT-Guwahati being the Organizing Institute for GATE 2018.

We hope this article helps you prepare well for your GATE Instrumentation Engineering Exam. All the Best!